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A study has been made of the boundary-value problem in the region D (0 ~.~ zx % a, 0 ~ z,  ~ a): 

o-~ " = ~  (1) 

h ( ~ ,  x2, 0 ) = H o ,  h(O, x~, t ) - -~h(zl ,  0, t ) -~H~,  h(xa, a, t ) = h ( a ,  x.~, t) --~Ho . (2) 

Equations (1), (2) describe the unsteady motion of ground water from a free surface in a layer  of finite depth over 
a horizontal  impermeable  base without infi l t rat ion or evaporation from the free surface being taken into account;  k and 
m in (~) are used to denote the coefficients of percola t ion and water loss of the soil, h (zt, za, t) is the ground water 
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head at point x~, x 2 at  t ime  t.  Two impl ic i t  difference schemes were stud- 
ied for this problem, which has a slight nonlineari ty.  

The first scheme is known as the local  one-dimensional  method of 
var iable  directions [1]; its theory is quite well developed.  For conditions 
(1), (2) this scheme is as follows. At each moment  of t ime tj+i/2, i = 1, 2, 
i - -  0, 1, . . . .  K,  T = 7" / K,  we solve the equation 

[ oh, h Oh I ~ 0 ~,hl 
Oh ~ axe* ] ' 

h xi t 
hi  =H--o-o ' x~* = "~-'-, t 1 - -  B ' B - -  

(< h > is some mean value  of the head).  

m A  2 
k <h) ' A =  10 a 

(8) 

As boundary conditions we use the values of the boundary functions at  the points of intersection of straight lines 
para l le l  to the 0x i -ax is  and the boundary of the region of integration;  as ini t ia l  values we use the values obtained in the 
computations for the preceding layer .  The second var iable  xj (j r i) enters the equation as a parameter .  The solution 
of the f in i te -d i f fe rence  analog of Eq. (3) is denoted z = z(x 1 xz t); in this case 

z (xl  ~', z~ z~, tj) J - -  

The local  one-dimensional ,  three-point ,  second-order  difference scheme [1] for Eq. (3) has the form 

1 ( - i+V~__  z . ~ )  A z J+% 

i (Z i+1 J+'/* A 2: j+ l  
id~ --e%~2 ) = ~ h h  " 

(4) 

Here A i is an operator approximat ing the in i t ia l  dif ferent ia l  operator 

O ( 0 h )  z+li (z+I~ - -  z) - -  z (z - -  z-10 z + ra~=  xi + m h ,  

and h i is the space var iable  interval ,  

The second scheme was developed on the basis of the method proposed in [2] for the heat  conduction equation.  

Equation (1) is reduced to the form 

Oh ~ kh r O~h 2 O~h~ l 
at = - ~  La-~'d + a-~'~j " (5) 

In scheme 2, in addi t ion to the values of the approximat ing function z, in the j - t h  and (j + 1)-th layers with re-  
spect to t ime,  in accordance  with [2], we introduce some in termedia te  solution gt,t," j+l of the problem (which corre-  
sponds to the introduction of an in te rmedia te  layer  j + ~ into scheme 1). Equation (5) is replaced by the following sys- 

tem of f in i te -d i f fe rence  relations: 
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- U  (z~+~ - -  z f )  = - -  z: (~  ~z ~ + a~ ~ ) ,  
(6) 

t k " Zii+I, j -- 2zit, i "~ zil-1, J 
- 7 -  %+~ - z~d)  = --., z~ (Gd'-~+~ - G ? ~ )  , G ~ ' ~  = h~ 

The convergence and the s tabi l i ty  of the corresponding l inear  system was demonstrated in [2]. The s tabi l i ty  of 
the nonlinear system (6) was checked exper imenta l ly .  

The behavior of schemes 1 and 2 was studied for a l inear ized Eq. (1) of the form 

Oh1 O~h, Oehl 
Oq ! - -  OXl ~ + 0"0-2~2 ~ ' (7 )  

for which an exact  solution is known [3], with the in i t ia l  and boundary conditions st ipulated in [4], where the problem 
(7), (2), is solved as an example ,  using an expl ic i t  difference scheme, for k --- 5 m/day,  m = 0.06, < h > = H0 = 30 m, 
H 1 = 40 m, r = 100 days, h i = h~ = 1000 m, a = 10 000 m. The exact  solution of (7), (2) is expressed by the formula 

h (xa, a% t ) =  HI - -  (HI--Ho) Op (xl / 2a ]/-t) (l) (x2 / 2a ] / - i ) .  

Here ~ is the probabi l i ty  integral .  This formula and (4) and (6) were used in making computations with the 
above-ment ioned  ini t ia l  and boundary conditions.  Figure 1 shows diagonal  sections of r_he tables of ground water levels 

at  the t ime t = 700 days. For comparison we show computations ' 320 
using the expl ic i t  scheme given in [4]. In Fig. 1, curve 1 c o r r e -  ~ggXz t--I yf/ 3t~ 30~ao~) 3o~[(ao.g~O'gsu~ 
sponds to the exact  solution and curve 2 to the expl ic i t  scheme;  ~0.z [3z~ J~k~._3Q.0 
curve 3 corresponds to the second scheme and curve 4 to the first [ag,~ 332 3~a (3to) s~i ~o.z) r3oo) " - 3 g o  

Nt to./ 
scheme.  The closest co inc idence  with the exact  solution is given ~g~ (s~ 3l~ a~.~ ~o5) zo/~az) (Jo./) 
by the computations for the first scheme.  The expl ic i t  method 4g~ ~z~ ~3a 
might  be preferred due to the s impl ic i ty  of the computat ions;  how- ~z~, {33.3) 3zo(3I./j 3.dlSr304) 3d2~SO, Z) 
ever, as is well  known, it  has a serious shortcoming - the need for ~0.~ 3f3] (Ji4) SZ! 3Nd '3~) 3~ ~JO,f) Jg 4 
severe constraints on the grid. In [4], for example ,  r ]h i  2 = 10 "4. ,___ ~ (3.~$ ~y.~ 3z? 

! "3fTj (33#) 7zo) yzo '~,#) Moreover, in problems of this type i t  is necessary to compute the ~k  U #  yz/ 

behavior of the free surface of the ground water flow over long 406 y~6~, a'J.32 lzz Y.# yzd 
p e r i o d s o f t i m e ,  and t h e r e f o r e t h e l i m i t a t i o n o n t h e  t i m e i n t e r v a I  / 3 ~ i ~ , , "  3S~ " [ 3 ~ . ~ 7  ~(3~., J~31g3,ZZ) 
is par t icu lar ly  res t r ic t ive.  Impl ic i t  methods are free of this short- 4g~ x ! \(3~.# 8d5 ~-~'-~----~-_ _ , .  0 

coming and are convenient  from the programming point of view. 40.a [yze ~ 3~.a(~s.# y&'~&~) 3f~ 
�9 3d# 

t " YY..l ~-~'=~- Both schemes  are  app l icab le  if  h (Xl, X2, t) ~ C O ~ O. ~ . ~ _ _  
40~ 3g (3g~) 3s ('33.37 3Z7 [3ZM 37.7 (#__7.g) 3ZG ~3Z~) ;3H# 

The nonlinear equations (4), (6) with ini t ia l  and boundary x~j 

conditions (2) were solved by i terat ions of the following form. As ~o~ 4gO 4gO 400 .~go~ ago a~,g 4gY 4gO 4~0 4~0 
the in i t ia l  approximat ion in the coefficients  we se lec ted  values of Fig. 2 
the function from the preceding layer  and used the pivot  method 
to compute  the first approximat ion of the required function, This value was l ikewise  entered into the coefficients and 

the second i tera t ion was computed,  and so forth, unti l  the st ipulated accuracy  was a t ta ined.  

Figure 2 shows lines representing the surface levels  of the  ground water, computed using schemes 1 and 2 (cont in-  

uous and broken lines, respect ively) ;  the levels a t  the individual  nodes of the grid are also noted (the values in paren-  

theses corresponds to scheme 2). 

The discrepancies in the values given by the two schemes are smal l  and decrease with t ime .  This suggests the use 

of scheme 2, which in the solution of (7), (2) involved fewer computat ions.  
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